ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

A new convenient procedure for the thionation of carbonyl compounds utilizing tetrachlorosilane-sodium sulfide

Tarek A. Salama a,b,*, Abdel-Aziz S. El-Ahl a, Saad S. Elmorsy a, Abdel-Galil M. Khalil a, Mohamed A. Ismail a,c

- ^a Chemistry Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
- ^b Chemistry Department, Faculty of Education, Amran University, Amran, Yemen
- ^cChemistry Department, College of Science, King Faisal University, PO Box 380, Hofuf 31982, Saudi Arabia

ARTICLE INFO

Article history: Received 19 June 2009 Revised 29 July 2009 Accepted 14 August 2009 Available online 20 August 2009

Keywords: Tetrachlorosilane–sodium sulfide Thionation Trithioaldehydes β-Mercaptoketones Synthesis

ABSTRACT

A combination of tetrachlorosilane (TCS) and sodium sulfide in acetonitrile is found to be an efficient thionating reagent for aromatic aldehydes in the absence of catalysis to give the corresponding thioaldehydes as trimers in good yields. Under cobalt(II) chloride catalysis, α,β -unsaturated ketones react with TCS-Na₂S to give the respective disulfides in good yields via the intermediacy of β -mercaptoketones at ambient temperature.

© 2009 Elsevier Ltd. All rights reserved.

Organosulfur compounds are important intermediates for the synthesis of various biologically active molecules as well as in industry.¹ Thionation of carbonyl compounds is widely applied for the synthesis of organosulfur compounds.² A variety of thionating reagents have been described in the literature.3 Synthetically, Lawesson's reagent (LR)⁴ and P₄S₁₀, ^{5a} either alone or with additives,5b-d are the most effective sulfurating reagents. However, aside from its high cost, LR has the major disadvantage of being extremely sensitive to moisture and it is very difficult to prepare and handle it in pure form,6 and the by-products derived from the reagent itself cannot, in general, be removed by any extractive procedure and must be separated by column chromatography. Thiosilanes, particularly hexamethyldisilathiane (HMDST),⁷ have been used as thionating reagents, often under catalysis. They exhibit specific reactivity due to the unique and complementary properties of sulfur and silicon, and have thus emerged as very useful reagents in synthetic organic chemistry.8 However, organothiosilanes are good reagents for carbonyl functionalization⁹ as they react with activated carbonyl compounds through cleavage of the Si-S bond and addition to the C=O group; the uncatalyzed thiosilane addition is still not a facile process, and requires high temperatures and long reaction times. 10 On the other hand, silyl sulfides were found to react slowly with α,β -unsaturated ketones at elevated

E-mail address: tasalama@yahoo.com (T.A. Salama).

temperature but, in the presence of cyanide, thiolate, or fluoride ions, the addition process occurs very efficiently to afford 1,4-adducts. 11 The development of novel synthetic strategies for thionation, which have advantages with respect to mild reaction conditions, cleaner reactions, and simple isolation of the product, is of interest. In this context, and in conjunction with our interest 12 in exploring the utility of in situ reagents based on tetrachlorosilane (TCS)¹³ in organic synthesis, we report herein a new in situ thiosilane system derived from cheap and readily available tetrachlorosilane and sodium sulfide that converts aromatic aldehydes into their corresponding thioaldehydes, which are obtained as trimers, in good yield at room temperature using acetonitrile as a solvent without any catalyst. Also, under these exceptionally mild conditions, α,β-unsaturated ketones react with the SiCl₄-Na₂S reagent in the presence of a catalytic amount of CoCl₂·6H₂O to give β-mercaptoketone derivatives that subsequently auto-oxidize to give the respective disulfides. However, no reaction was observed with aryl methyl ketones.

The reaction of aldehydes with $SiCl_4$ - Na_2S proceeds without further addition of any catalyst giving good yields of the corresponding thioaldehydes which were obtained as trimers (Scheme 1, Table 1). The structures of the isolated trithioaldehydes were assigned based on their spectral analyses as well as by comparison of their melting points with reported values. ¹⁴

The driving force for the present reaction is the net formation of the stronger Si–O bond, where the difference in Si–O and Si–S bond energies is \approx 34 kcal, ¹⁵ and therefore promotes the easy addition of

^{*} Corresponding author at present address: Chemistry Department, Faculty of Education, Amran University, Amran, Yemen. Tel.: +967 733411626.

Scheme 1.

Table 1Reaction of aryl aldehydes with the TCS-Na₂S reagent

_					
	Entry	Substrate	Time (h)	Product	Yield ^a (%)
Ī	1	Benzaldehyde	9	2a	82
	2	4-Methylbenzaldehyde	10	2b	77
	3	4-Methoxybenzaldehyde	8	2c	79
	4	4-Chlorobenzaldehyde	12	2d	68
	5	4-Bromobenzaldehyde	14	2e	72
	6	3-Bromobenzaldehyde	18	2f	63
	4	4-Chlorobenzaldehyde 4-Bromobenzaldehyde	12 14	2d 2e	68 72

a Yield of isolated product.

thiosilane to the carbonyl group of the aldehyde with formation of the thermodynamically controlled products.

Applying the present reaction to aryl methyl ketones failed to yield the corresponding thicketones even with the use of a catalyst and/or by heating. This led us to attempt the reaction with α,β unsaturated ketones, the reason being that the 1,4-addition might be a favorable process (Scheme 2). Thus, α,β -unsaturated ketones were found to react with TCS-Na₂S in the presence of a catalytic amount of CoCl₂·6H₂O to give the 1,4-adducts (presumably the thiols C. Scheme 3) but, as is well known, such thiols undergo autooxidative dimerization easily to give disulfides 4. 16 It is noteworthy to mention that no reaction was observed in the absence of either the catalyst or SiCl₄. The generality of the process was examined by applying the reaction to various examples of α,β-unsaturated ketones; however, bischalcones gave a complex mixture with no preparative value. For example, dibenzalacetone and 2,6-bis(4methoxybenzal)cyclohexanone gave no distinct products (Scheme 2, Table 2).

The structure of disulfides **4** was supported by analytical and spectral data. In the IR spectra of **4**, the absorption at 1670–1680 cm⁻¹ attributed to the carbonyl stretching of the saturated system showed a clear shift compared to the corresponding starting α,β -unsaturated ketone. The ¹H NMR spectrum of **4f**, for example, showed two doublets at δ 3.46 and δ 3.29 as well as two triplets at δ 4.42 and δ 4.16. These were assigned to the C-2 and C-3 protons, respectively.

Plausible mechanisms for the present reactions may proceed as depicted in Scheme 3. 1,2-Addition of stoichiometric thiosilane, generated in situ from the reaction of TCS and Na₂S in 2:1 molar ratio, in a similar manner to HMDST preparation¹⁷ (proposed hexachlorodisilathiane **A**; HCDST) to the carbonyl group of the aldehyde **1** yields the transient thioaldehyde **B** which undergoes trimerization to form **2**. By analogy, the proposed hexachlorodisilathiane A reacts with α,β -unsaturated ketones **3** only in the presence of CoCl₂-6H₂O catalysis via a 1,4-addition mechanism to give the thiol C which subsequently undergoes autooxidative dimerization to form disulfides **4**.

In conclusion, we have developed a new thiosilane reagent which is generated in situ from readily available and inexpensive tetrachlorosilane and sodium sulfide. The thiosilane reagent acts as a mild and potent thionating reagent for aromatic aldehydes in acetonitrile at room temperature without catalysis giving the corresponding trithioaldehydes in good yields. Under these mild conditions, α,β -unsaturated ketones react with SiCl4–Na2S using a catalytic amount of CoCl2·6H2O to give the respective disulfides via a 1,4-conjugate addition mechanism. This new in situ reagent may find additional applications as a substitute for HMDST, poten-

3a, 4a; Ar = Ar' = Ph 3b, 4b; Ar = Ph, Ar' = 4-BrC₆H₄-3c, 4c; Ar = Ph, Ar' = 4-MeC₆H₄-3d, 4d; Ar = 4-MeC₆H₄-, Ar' = 4-BrC₆H₄-3e, 4e; Ar = Ar' = 4-MeC₆H₄-3f, 4f; Ar 2-thienyl, Ar' = Ph

Scheme 3. Plausible mechanisms for the formation of 2 and 4.

Table 2 Reaction of α , β -unsaturated ketones with the TCS-Na₂S reagent in the presence of CoCl₂·6H₂O

Entry	Substrate	Time (h)	Product	Yield ^a (%)
1	Benzalacetophenone	12	4 a	71
2	4-Bromobenzalacetophenone	14	4b	63
3	4-Methylbenzal-acetophenone	12	4c	72
4	4-Bromobenzal-4'-methylacetophenone	14	4d	66
5	4-Methylbenzal-4'-methylacetophenone	12	4e	74
6	2-Benzal-2-acetylthiophene	11	4f	61
7	Dibenzalacetone	17	_	_
8	2,6-Bis(4-methoxybenzal)cyclohexanone	18	_	_

^a Yield of isolated product.

tially expanding the synthetic value of tetrachlorosilane in synthetic organic chemistry.

References and notes

- (a) Damani, L. A. Sulfur-containing Drugs and Related Organic Compounds— Chemistry Biochemistry and Toxicology; Ellis Horwood: Chichester, 1989; (b) Brillon, D. Sulfur Rep. 1992, 12, 297–332.
- (a) Polshettiwar, V.; Kaushik, M. P. J. Sulfur Chem. 2006, 27, 353–386; (b) Pathak, U.; Pandey, L. K.; Tank, R. J. Org. Chem. 2008, 73, 2890–2893 and references cited therein.
- (a) Pedersen, B. S.; Scheibye, S.; Nilsson, N. H.; Lawesson, S. O. Bull. Soc. Chim. Belg. 1978, 87, 223–228; (b) Yang, C. O.; Rotstein, D. M.; Labadie, S. S.; Walker, K. A. M. Synlett 1995, 655–658.
- (a) Curphey, T. J. Tetrahedron Lett. 2002, 43, 371–373; (b) Curphey, T. J. Tetrahedron Lett. 2000, 41, 9963–9966; (c) Curphey, T. J. J. Org. Chem. 2002, 67, 6461–6473.
- (a) Polshettiwar, V. Synlett 2004, 2245–2246. and references cited therein; (b) Kaleta, Z.; Tarkanyi, G.; Gomory, A.; Kalman, F.; Nagy, T.; Soos, T. Org. Lett. 2006, 8, 1093–1095; (c) Varma, R. S.; Kumar, D. Org. Lett. 1999, 1, 697–700; (d) Pedersen, B. S.; Lawesson, S. O. Tetrahedron 1979, 35, 2433–2437.
- (a) Colvin, E. W. In Chemistry of Organic Silicon Compounds; Rappoport, Z., Apeloig, Y., Eds.; Wiley: Chichester, 1998; Vol. 2, Part 2, p 1667; (b) Lecher, H. Z.; Greenwood, R. A.; Whitehouse, K. C.; Chao, T. H. J. Am. Chem. Soc. 1956, 78, 5018–5022.
- (a) Degl'Innocenti, A.; Capperucci, A.; Castagnoli, G.; Malesci, I. Synlett 2005, 1965–1983;
 (b) Matulenko, M. A. In Encyclopedia of Reagents for Organic Synthesis; Paquette, L., Ed.; J. Wiley & Sons: New York, 2004; Vol. 1, p 5.
- 8. (a) Degl'Innocenti, A.; Capperucci, A. Eur. J. Org. Chem. **2000**, 2171–2186; (b) Block, E.; Aslam, M. Tetrahedron **1988**, 44, 281–324.
- 9. Degl'Innocenti, A.; Capperucci, A. Sulfur Rep. **1998**, 20, 297–395.
- (a) Mukaiyama, T.; Ohno, T.; Nishimura, T.; Han, J. S.; Kobayashi, S. Bull. Chem. Soc. Jpn. 1991, 64, 2524–2527; (b) Noyori, R.; Murata, S.; Suzuki, M. Tetrahedron 1981, 37, 3899–3910.

- (a) Evans, D. A.; Truesdale, L. K.; Grimm, K. G.; Nesbitt, S. L. J. Am. Chem. Soc. 1977, 99, 5009–5017; (b) Cohen, T.; Matz, J. R. J. Am. Chem. Soc. 1980, 102, 6900–6902.
- 12. (a) Salama, T. A.; Elmorsy, S. S.; Ismail, M. A. In Proceedings of the 12th Electronic Conference in Synthetic Organic Chemistry (ECSOC-12), 2008, 1–30 Nov, a002.; www.mdpi.org/ecsoc-12.; (b) Salama, T. A.; Elmorsy, S. S.; Khalil, A. M.; Ismail, M. A. Tetrahedron Lett. 2007, 48, 5199–6203; (c) Salama, T. A.; Elmorsy, S. S.; Khalil, A. M. Tetrahedron Lett. 2007, 48, 4395–4398; (d) Salama, T. A.; Elmorsy, S. S.; Khalil, A. M.; Girges, M. M.; El-Ahl, A. S. Synth. Commun. 2007, 37, 1313–1319; (e) Salama, T. A.; El-Ahl, A. S.; Khalil, A. M.; Girges, M. M.; Lackner, B.; Steindl, C.; Elmorsy, S. S. Monatsh. Chem. 2003, 134, 1241–1252; (f) Elmorsy, S. S.; Khalil, A. M.; Girges, M. M.; Salama, T. A. Tetrahedron Lett. 1997, 38, 1071–1074; (g) Elmorsy, S. S.; Khalil, A. M.; Girges, M. M.; Salama, T. A. J. Chem. Res. (S) 1997, 231–232.
- (a) Massa, A.; De Sio, V.; Villano, R.; Acocella, M. R.; Palombi, L.; Sellitto, G.; Peduto, A.; Filosa, R.; De Capraris, P.; Scettri, A. Synthesis 2009, 643–649; (b) Kotani, S.; Shimoda, Y.; Sugiura, M.; Nakajima, M. Tetrahedron Lett. 2009, 50, 4602–4605; (c) Curti, C.; Sartori, A.; Battistini, L.; Rassu, G.; Zanardi, F.; Casiraghi, G. Tetrahedron Lett. 2009, 50, 3428–3431; (d) Badawy, D. S.; Abdel-Galil, E.; Kandeel, E. M.; Basyouni, W. M.; El-Bayouki, K. A. M.; Khatab, T. K. Phosphorus, Sulfur, Silicon 2009, 184, 220–233; (e) Dash, B. P.; Satapathy, R.; Maguire, J. A.; Hosmane, N. S. Org. Lett. 2008, 10, 2247–2250; (f) Denmark, S. E.; Chung, W.-J. J. Org. Chem. 2008, 73, 4582–4595; (g) Ramalingan, C.; Kwak, Y.-W. Tetrahedron 2008, 64, 5023–5031; (h) Nakanishi, K.; Kotani, S.; Sugiura, M.; Nakajima, M. Tetrahedron 2008, 64, 6415–6419; (i) Chelucci, G.; Baldino, S.; Pinna, G. A.; Benaglia, M.; Buffa, L.; Guizzetti, S. Tetrahedron 2008, 64, 7574–7582; (j) Ogini, F. O.; Ortin, Y.; Mahmoudkhani, A. H.; Cozzolino, A. F.; McGlinchey, M. J.; Vargas-Baca, I. J. Organomet. Chem. 2008, 693, 1957–1967.
- (a) Jerumanis, S.; Lalancette, J. M. Can. J. Chem. 1964, 42, 1928–1935; (b) Kamal, A.; Qureshi, A. A. Pak. J. Sci. Res. 1963, 15, 75; Chem. Abstr. 1964, 60, 8034a.; (c) Stanfield, J. A.; Reynolds, B., Jr. J. Am. Chem. Soc. 1952, 74, 2878–2880; (d) Lebedev, E. P.; Mizhiritskii, M. D.; Baburina, V. A.; Zaripov, S. I.; Zh. Obshch. Khim. 1979, 49, 1084; Chem. Abstr. 1979, 91, 39578.
- 15. Eaborn, C. J. Chem. Soc. 1950, 3077-3089.
- (a) Choi, S. S.-M.; Kirby, G. W. J. Chem. Soc., Perkin Trans. 1 1991, 3225–3233; (b) Baldwin, J. E.; Lopez, C. G. Tetrahedron 1983, 39, 1487–1498.

- 17. So, J.-H.; Boudjouk, P.. In *Inorganic Syntheses*; Russell, N. G., Ed.; Wiley: New York, 1992; Vol. 29, p 30.
- 18. A typical procedure for the thionation of carbonyl compounds: A mixture of anhydrous Na₂S (10 mmol) and SiCl₄ (20 mmol) in MeCN (15 ml) was stirred for 15 min at ambient temperature. To this mixture, a solution of carbonyl compound (5 mmol) in MeCN (10 ml) was added as well as a catalytic amount of CoCl₂-6H₂O (in the case of α,β-unsaturated ketones), and the reaction mixture was stirred at room temperature. On completion (TLC), the mixture was quenched with cold water, extracted with ethyl acetate (for aldehydes) or with CHCl₃ (for α,β-unsaturated ketones), dried over anhydrous MgSO₄, and the solvent was evaporated under vacuum and the residue was recrystallized to give compound 2 or chromatographed using petroleum ether-ethyl acetate (20:1) as eluent (in most cases) to give pure 4. Note: Sodium sulfide nonahydrate (Na₂S-9H₂O) was dried by refluxing using dry benzene and a Dean-Stark apparatus for three days. All the prepared trithioaldehydes 2 are known. ¹⁴ Disulfides 4 are novel except for 4a. ¹⁹ Data for some representative examples are provided.

Bis-[1 -(4-methylphenyl)-3-oxo-3-phenylpropyl]disulfide **4c**: Yield 72%; mp 105 °C; IR (KBr plate) ν 3054, 3027, 2918, 1677 (CO), 1597, 1513, 1447, 1367, 1257, 1208, 819, 760, 687 cm $^{-1}$; 1 H NMR (300 MHz, CDCl $_{3}$) δ 7.78 (m, 4H), 7.58 (m, 2H), 7.53 –7.06 (m, 12H), 4.14 (m, 2H), 3.44 (dd, 1 J = 16.76, 7.93 Hz, 2H), 3.38 (dd, 1 J = 16.76, 7.93 Hz, 2H), 2.28 (s, GH, 2 × CH $_{3}$); 13 C NMR (75 MHz, CDCl $_{3}$) δ 196.66, 138.56, 136.87, 136.66, 132.98, 129.12, 128.00, 127.97, 45.52,

44.12, 21.1; EI-MS (m/z, %): 510 (M^+ , 7), 255 (13), 223 (25), 119 (100), 77 (91). Anal. Calcd for $C_{32}H_{30}O_2S_2$ (510.892): C, 75.26; H, 5.92; S, 12.56. Found: C, 75.18; H, 6.02; S, 12.67.

Bis-[1,3-bis(4-methylphenyl)-3-oxopropyl]disulfide **4e**: Yield 74%; Purification by recrystallization from diethyl ether; mp 113–115 °C.; IR (KBr plate) ν 3027, 2918, 2859, 1677 (CO), 1605, 1512, 1410, 1367, 1263, 1182, 1116, 810, 726 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 7.71–7.65 (m, 4H), 7.24–7.12 (m, 10H), 7.05 (d, 2H, J = 7.4 Hz), 4.39 (t, 1H, J = 7.3 Hz), 4.11 (t, 1H, J = 7.3 Hz), 3.46 (d, 2H, J = 7.2 Hz), 3.34–3.27 (m, 2H), 2.36 (s, 6H, 2 × CH₃), 2.28 (s, 6H, 2 × CH₃); ¹³C NMR (50 MHz, CDCl₃) δ 196.15, 142.18, 138.69, 137.07, 136.13, 128.91, 128.35, 127.19, 46.12, 44.57, 23.19, 21.34; EI-MS (m/z, %): 538 (m*, 5), 269 (15), 237 (32), 119 (100), 91 (82). Anal. Calcd for C₃₄H₃₄O₂S₂ (538.76): C, 75.79; H, 6.36; S, 11.90. Found: C, 75.84; H, 6.28; S, 11.65.

Bis-[1-phenyl)-3-oxo-3-thienylpropyl]disulfide **4f**: Yield 61%; mp 97 °C; IR (KBr plate, cm⁻¹) ν 3094, 3027, 2920, 1659 (CO), 1599, 1515, 1451, 1413, 1357, 1329, 1237, 1063, 856, 753, 726, 699; ¹H NMR (200 MHz, CDCl₃) δ 7.60–7.54 (m, 2H), 7.27–7.15 (m, 10H), 7.10–7.05 (m, 4H), 4.42 (t, 1H, J = 7.0 Hz), 4.16 (t, 1H, J = 7.0 Hz), 3.46 (d, 2H, J = 7.4 Hz), 3.29 (d, 2H, J = 7.4 Hz); ¹³C NMR (50 MHz, CDCl₃) δ 191.05, 142.10, 141.56, 133,72, 131.53, 128.69, 127.53, 127.29, 127.12, 45.16, 43.88; El-MS (m/z, %): 494 (M * , 9), 247 (10), 246 (12), 215 (27), 105 (100). Anal. Calcd for C₂₆H₂₂O₂S₄ (494.71): C, 63.12; H, 4.48; S, 25.93. Found: C, 63.02; H, 4.29; S, 26.02.

19. Tanaka, H.; Yokoyama, A. Chem. Pharm. Bull. 1960, 8, 275-279.